Exogenous MPP3 is Sufficient to Induce Excitatory Synapse Formation

نویسندگان

  • Kelly Mead
  • Kevin Jones
  • Christy Fillman
چکیده

Brain-derived neurotrophic factor (BDNF) is a secreted growth factor critical for the establishment and maintenance of central nervous system (CNS) synapses. However, the precise mechanisms that allow BDNF signaling to regulate synapse formation are unknown. Interestingly, MAGUK scaffold proteins, a family of proteins critical for organizing the molecular architecture of the synapse, have altered gene expression in the brains of BDNF mutant mice. This suggests that BDNF's in vivo regulation of MAGUK proteins may be important for the process of BDNF-induced synapse formation. Two MAGUKs with the most significantly decreased expression are membrane protein, palmitoylated 3 (MPP3) and postsynaptic density 95 (PSD95). PSD95 is a well-established mediator of synapse formation as demonstrated by PSD95's colocalization with postsynaptic proteins, sufficiency to increase synapse density, and trafficking to synapses in a BDNF-dependent manner. However, little is known about the role of MPP3 in synapse formation. The specific objective for this research project was to determine if MPP3 positively regulates synapse development and to determine the requirement of MPP3 in BDNF-induced excitatory synapse formation. To test the role of MPP3 in synapse formation two MPP3 expression constructs and three short-hairpin RNAs (shRNAs) were created and transfected in neuronal cultures. The neuronal cultures were fixed and stained for excitatory synaptic markers, VGlut1 and PSD95, and finally imaged using laser scanning confocal microscopy to highlight synapses on these neurons. This methodology was used in order to determine if MPP3 1) localizes to postsynaptic areas, 2) is sufficient to increase synapse density, and 3) is required for BDNF-induced synapse formation. Based on our findings, MPP3 localizes to potential postsynaptic regions and is sufficient to increase excitatory synapse formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7.

Specific formation of excitatory and inhibitory synapses is crucial for proper functioning of the brain. Fibroblast growth factor 22 (FGF22) and FGF7 are postsynaptic-cell-derived presynaptic organizers necessary for excitatory and inhibitory presynaptic differentiation, respectively, in the hippocampus. For the establishment of specific synaptic networks, these FGFs must localize to appropriat...

متن کامل

A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin.

Factors that control differentiation of presynaptic and postsynaptic elements into excitatory or inhibitory synapses are poorly defined. Here we show that the postsynaptic density (PSD) proteins PSD-95 and neuroligin-1 (NLG) are critical for dictating the ratio of excitatory-to-inhibitory synaptic contacts. Exogenous NLG increased both excitatory and inhibitory presynaptic contacts and the freq...

متن کامل

Neuroligin-1 Overexpression in Newborn Granule Cells In Vivo

Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecul...

متن کامل

Specific trans-synaptic interaction with inhibitory interneuronal neurexin underlies differential ability of neuroligins to induce functional inhibitory synapses.

Synaptic transmission depends on the matching and alignment of presynaptically released transmitters and postsynaptic neurotransmitter receptors. Neuroligin (NL) and Neurexin (Nrxn) proteins are trans-synaptic adhesion molecules that are important in validation and maturation of specific synapses. NL isoforms NL1 and NL2 have specific functional roles in excitatory and inhibitory synapses, resp...

متن کامل

The X-linked intellectual disability protein IL1RAPL1 regulates excitatory synapse formation by binding PTPδ and RhoGAP2

Mutations of the Interleukin-1-receptor accessory protein like 1 (IL1RAPL1) gene are associated with cognitive impairment ranging from non-syndromic X-linked mental retardation to autism. IL1RAPL1 belongs to a novel family of IL1/Toll receptors, which is localized at excitatory synapses and interacts with PSD-95. We previously showed that IL1RAPL1 regulates the synaptic localization of PSD-95 b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015